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Abstract
After the early suggestion by John Pendry (1980 Phys. Rev. Lett. 45 1356) to probe unoccupied
bands at surfaces through the time reversal of the photoemission process, the
inverse-photoemission technique yielded the first conclusive experimental evidence for the
existence of image-potential bound states at metal surfaces and has led, over the last two
decades, to an active area of research in condensed-matter and surface physics. Here we
describe the current status of the many-body theory of inelastic lifetimes of these
image-potential states and also the Shockley surface states that exist near the Fermi level in the
projected bulk band gap of simple and noble metals. New calculations of the self-energy and
lifetime of surface states on Au surfaces are presented as well, using the GW� approximation
of many-body theory.

1. Introduction

In a pioneering paper [1], Echenique and Pendry investigated
the observability of Rydberg-like electronic states trapped at
metal surfaces via low-energy electron diffraction (LEED)
experiments. They discussed the lifetime broadening of these
image-potential-induced surface states (image states), and
reached the important conclusion that they could, in principle,
be resolved for all members of the Rydberg series.

A few years later, Pendry suggested a new experiment [2]:
measurement of the bremsstrahlung-radiation spectrum from
electrons, with energies no more than a few tens of
electronvolts, incident on clean surfaces, thereby turning
incident electrons into emitted photons. This photon-
emission experiment is simply the time reversal of the
photoemission process and was referred to by Pendry as inverse
photoemission, or IPE for short.

Subsequently, Johnson and Smith [3] pointed out that
image states were potentially observable by angle-resolved
IPE; using this technique, Dose et al [4] and Straub and

Himpsel [5] reported the first conclusive experimental evidence
for image-potential bound states at the (100) surfaces of
copper and gold. Since then, several observations of image
states have been made using this technique [6–12], and also
the more recent high-resolution techniques of two-photon
photoemission (2PPE) [13–15] and time-resolved two-photon
photoemission (TR-2PPE) [16–18]. In 2PPE, intense laser
radiation is used to populate an unoccupied state with the first
photon and to photoionize from the intermediate state with the
second photon. In TR-2PPE, the probe pulse which ionizes the
intermediate state is delayed with respect to the pump pulse
which populates it, thus providing a direct measurement of the
intermediate-state lifetime.

At metal surfaces, in addition to image states (which
originate in the combination of the long-range image-potential
in front of solid surfaces with the presence of a band gap
near the vacuum level) [19, 20] there exist crystal induced
surface states (which would occur even for a step barrier in
the absence of the image-potential) [21] often classified as
Shockley and Tamm states [22, 23]: Shockley states exist
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Figure 1. The �L projected bulk band structure (shaded areas) of the (111) and (100) surfaces of the noble metals Cu and Au. The solid lines
represent Shockley (n = 0) and image-potential (n = 1) surface-state bands. Well-defined Shockley states are only present at the Cu(111) and
Au(111) surfaces, where the projected band gap extends below the Fermi level. Well-defined image states are present at the Cu(100) and
Au(100) surfaces, and also at the (111) surface of Cu. At Au(111) there is only an image-state resonance lying above the top of the band gap.
The horizontal thin solid lines represent Fermi and vacuum levels.

near the Fermi level in the projected bulk band gap of simple
and noble metals, and Tamm states exist at the M̄-points of
the surface Brillouin zone for various noble-metal surfaces.
The lifetimes of excited holes at the band edge (k‖ = 0) of
Shockley states have been investigated with high-resolution
angle-resolved photoemission (ARP) [24–27] and with the
use of the scanning tunneling microscope (STM) [28, 29].
STM techniques have also allowed the determination of the
lifetimes of excited Shockley and image electrons over a range
of energies above the Fermi level [30, 31].

Figure 1 illustrates Shockley and image-potential states in
the gap of the �L projected band structure of the (100) and
(111) surfaces of the noble metals Cu and Au. If an electron
or hole is added to the solid at one of these states, inelastic
coupling of the excited quasiparticle with the crystal may occur
through electron–electron (e–e) and electron–phonon (e–ph)
scattering.

In this paper, we first give a brief description of
existing calculations of e–ph inelastic linewidths of image and
Shockley states, and we then focus on the many-body theory of
e–e inelastic lifetimes of these states. In particular, we describe
the current status of many-body GW and GW� calculations,
and we report new GW� calculations of the self-energy
and lifetime of surface states on Au surfaces. We conclude
that short-range exchange–correlation (xc) contributions to the
electron (or hole) self-energy are small, as occurs in the case
of bulk states.

Unless otherwise is stated, atomic units are used
throughout, i.e. e2 = h̄ = me = 1. The atomic unit of length

is the Bohr radius, a0 = h̄2/m2
e = 0.529 Å, the atomic unit

of energy is the Hartree, 1 Hartree = e2/a0 = 27.2 eV, and
the atomic unit of velocity is the Bohr velocity, v0 = α c =
2.19 × 108 cm s−1, α and c being the fine-structure constant
and the velocity of light, respectively.

2. Electron–phonon coupling

The decay rate due to the e–ph interaction, which is relatively
important only in the case of excited Shockley holes near the
Fermi level, has been investigated by using the Eliashberg
function [32]. In particular, at zero temperature (T = 0) and in
the high-temperature limit (kBT � ωm, kB being Boltzmann’s
constant and ωm, the maximum phonon frequency) one finds
respectively, assuming translational invariance in the plane of
the surface, the following expressions for the e–ph induced
linewidth (or lifetime broadening) �ep of surface states of
parallel momentum k and energy E [32, 33]:

�0
ep(k, E) = 2π

∫ max(|E |,ωm)

0
α2 Fk(ω) dω (1)

and
�ep(k, E) = 2πλ(k) kBT, (2)

where α2 Fk(ω) is the Eliashberg function, which represents a
weighted phonon density of states, and

λ(k) =
∫ ωm

0

α2 Fk(ω)

ω
dω. (3)
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Table 1. Electron–phonon linewidths at T = 0 (�0
ep), in meV, and

the parameter λ that is responsible for the high-temperature behavior
of �ep, as reported at the �̄-point in [34, 35].

Surface n �0
ep λ

Al(100) 0 18 0.23
Cu(111) 0 7.3 0.16
Ag(111) 0 3.7 0.12
Au(111) 0 3.6 0.11
Cu(100) 1 <1 meV <0.01
Ag(100) 1 <1 meV <0.01

For many years, the e–ph contribution �ep(k, E) to the
inelastic decay of surface states had been calculated using a
three-dimensional (3D) Debye phonon model with λ obtained
from measurements or calculations of bulk properties [32].
More refined calculations, which are based on an accurate
description of the full Eliashberg spectral function, have been
carried out recently by Eiguren et al [34, 35] for (i) the
Shockley surface-state hole (n = 0) at the �̄-point of Al(100)
and the (111) surfaces of the noble metals Cu, Ag, and
Au [34], and (ii) the first (n = 1) image-state electron
at the �̄-point of the (100) surfaces of Cu and Ag [35].
These calculations are based on the use of (i) Thomas–Fermi
screened Ashcroft electron–ion pseudopotentials, (ii) single-
particle states obtained by solving a single-particle model one-
dimensional (1D) Schrödinger equation, and (iii) a simple
force-constant phonon model calculation that yields a phonon
spectrum in good agreement with experimental data.

A summary of the results reported by Eiguren et al
[34, 35] is presented in table 1. Electron–phonon linewidths
are particularly relevant in the case of surface-state holes
with energies very near the Fermi level, in which case the
contribution from e–e interactions is very small. In the case of
image states, whose energies lie typically a few electronvolts
above the Fermi level, the e–ph linewidth is found to be �ep <

1 meV, thereby showing the negligibly small role of phonons
in the electron dynamics of image-potential states.

3. Electron–electron coupling

Let us consider an arbitrary many-electron system of density
n0(r). In the framework of many-body theory, the e–e
linewidth (or decay rate) �ee of a quasiparticle (electron or
hole) that has been added in the single-particle state ψi(r)
of energy εi is obtained as the projection of the imaginary
part of the self-energy 	(r, r′; εi) over the quasiparticle-state
itself [36, 37]:

�ee = ∓2
∫

dr
∫

dr′ψ∗
i (r) Im	(r, r′; εi)ψi(r′), (4)

where the ∓ sign in front of the integral should be taken to
be minus or plus depending on whether the quasiparticle is an
electron (εi � εF) or a hole (εi � εF), respectively, εF being
the Fermi energy. Alternatively, equation (4) can be written as
follows

�ee = ∓ 2

π

∫ εi+0+

εi−0+

∫
dr

∫
dr′g0(r, r′; ε) Im	(r, r′; εi),

(5)

where

g0(r, r′; ε) = i

2

{
G0(r′, r; ε)− [

G0(r, r′; ε)]∗}
, (6)

G0(r, r′; ε) being the one-particle Green function of a
noninteracting many-electron system:

G0(r, r′; ε) =
∑

f

ψf(r)ψ∗
f (r

′)
ε − εf + iη

. (7)

Here, ψf(r) and εf represent the complete set of eigenfunctions
and eigenvalues of a one-particle Hamiltonian describing the
noninteracting many-electron system.

3.1. Self-energy: G0W and G0W 0 approximations

To lowest order in a series expansion of the self-energy
in terms of the frequency-dependent time-ordered screened
interaction W (r, r′;ω), the self-energy 	(r, r′; εi) is obtained
by integrating the product of the interacting Green function
G(r, r′; εi − ω) and the screened interaction W (r, r′;ω), and
is therefore called the GW self-energy. If one further replaces
the interacting Green function by its noninteracting counterpart
G0(r, r′; εi − ω), one finds the G0W self-energy. For the
imaginary part, one can write

Im	G0W (r, r′; εi) =
∑

f

′
ψ∗

f (r
′) Im W (r, r′; |εi − εf|) ψf(r),

(8)
where the prime in the summation indicates that the sum is
extended, as in equation (7), over a complete set of single-
particle states ψf(r) of energy εf but now with the restriction
εF � εf � εi or εi � εf � εF. In terms of the one-particle
noninteracting Green function G0(r, r′; ε), one finds

Im	G0W (r, r′; εi) = 1

π

∫ |εi−εF |

0
dε Im g0(r, r′; |εi − ε|)

× Im W (r, r′; ε), (9)

where g0(r, r′; ε) is given by equation (6). Introducing either
equation (8) or equation (9) into equation (4) or equation (5),
one finds an expression for the e–e linewidth that exactly
coincides with the result one would obtain from the lowest-
order probability per unit time for an excited electron or hole
in an initial state ψi(r) of energy εi to be scattered into the state
ψf(r) of energy εf by exciting a Fermi system of interacting
electrons from its many-particle ground state to some many-
particle excited state [38].

The screened interaction W (r, r′;ω) entering equa-
tions (8) and (9) can be rigorously expressed as follows

W (r, r′;ω) = v(r, r′)+
∫

dr1

∫
dr2 v(r, r1)

× χ(r1, r2;ω)v(r2, r′), (10)

v(r, r′) representing the bare Coulomb interaction and
χ(r, r′;ω) being the time-ordered density-response function of
the many-electron system, which for the positive frequencies
(ω > 0) entering equations (8) and (9) coincides with the
retarded density-response function of linear-response theory.
In the framework of time-dependent density-functional theory

3
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(TDDFT) [39], the exact retarded density-response function is
obtained by solving the following integral equation [40]:

χ(r, r′;ω) = χ0(r, r′;ω)+
∫

dr1

∫
dr2 χ

0(r, r1;ω)
× {

v(r1, r2)+ f xc[n0](r1, r2;ω)
}
χ(r2, r′;ω). (11)

Here, χ0(r, r′;ω) denotes the density-response function
of noninteracting Kohn–Sham electrons, i.e. independent
electrons moving in the effective Kohn–Sham potential of
density-functional theory (DFT) [41]:

χ0(r, r′;ω) = 2

�

∑
i, j

( fi − f j )× ψi(r)ψ∗
j (r)ψ j (r′)ψ∗

i (r
′)

ω − ε j + εi + iη
,

(12)
where � represents a normalization volume, fi are Fermi–
Dirac occupation factors (which at zero temperature take the
form fi = (εF − εi), (x) being the Heaviside step
function), and ψi(r) and εi represent the eigenfunctions and
eigenvalues of the Kohn–Sham Hamiltonian of DFT. The other
ingredient that is needed in order to solve equation (11) is the
xc kernel f xc[n0](r, r′;ω), which is the functional derivative
of the unknown frequency-dependent xc potential Vxc[n](r, ω)
of TDDFT, to be evaluated at n0(r).

In the random-phase approximation (RPA), f xc[n0]
(r, r′;ω) is set equal to zero:

χRPA(r, r′;ω) = χ0(r, r′;ω)+
∫

dr1

∫
dr2 χ

0(r, r1;ω)
× v(r1, r2) χ

RPA(r2, r′;ω), (13)

and the screened interaction W (r, r′;ω) is replaced by

W 0(r, r′;ω) = v(r, r′)+
∫

dr1

∫
dr2 v(r, r1)

× χRPA(r1, r2;ω) v(r2, r′), (14)

or, equivalently,

W 0(r, r′;ω) = v(r, r′)+
∫

dr1

∫
dr2 v(r, r1)

× χ0(r1, r2;ω)W 0(r2, r′;ω), (15)

which yields the so-called G0W 0 (or G0W -RPA) self-energy:

Im	G0W 0
(r, r′; εi) =

∑
f

′
ψ∗

f (r
′) Im W 0(r, r′; |εi − εf|)

× ψf(r), (16)

or, equivalently:

Im	G0W 0
(r, r′; εi) = 1

π

∫ |εi−εF|

0
dε Im g0(r, r′; |εi − ε|)

× Im W 0(r, r′; ε). (17)

3.2. Self-energy: GW� approach

The xc kernel f xc[n0](r, r′;ω) entering equation (11), which
is absent in the RPA, accounts for the presence of an xc
hole associated to all screening electrons in the Fermi sea.
Hence, one might be tempted to conclude that the full G0W
approximation (with the formally exact screened interaction
W of equation (10)) should be a better approximation than its
G0W 0 counterpart (with the screened interaction W evaluated

in the RPA). However, the xc hole associated to the excited
electron (or hole) is still absent in the G0W approximation.
Therefore, if one goes beyond RPA in the description of W ,
one should also go beyond the G0W approximation in the
expansion of the electron self-energy in powers of W . By
including xc effects both beyond RPA in the description of W
and beyond G0W in the description of the self-energy [42–44],
the so-called GW� approach yields a self-energy that is of the
G0W form:

Im	GW�(r, r′; εi) =
∑

f

′
ψ∗

f (r
′) Im W̃ (r, r′; |εi − εf|)

× ψf(r), (18)

or, equivalently:

Im	GW�(r, r′; εi) = 1

π

∫ |εi−εF|

0
dε Im g0(r, r′; |εi − ε|)

× Im W̃ (r, r′; ε), (19)

but with the actual screened interaction W (r, r′;ω) entering
equation (8) being replaced by a new effective screened
interaction

W̃ (r, r′;ω) = v(r, r′)+
∫

dr1

∫
dr2

{
v(r, r1)

+ f xc[n0](r, r1;ω)
}
χ(r1, r2;ω)v(r2, r′), (20)

which includes all powers in W beyond the G0W approxima-
tion.

3.3. Surface-state wavefunctions

3.3.1. Simple models

Outside the solid. Image states are quantum states trapped in
the long-range image-potential well outside a solid surface that
presents a band gap near the vacuum level. In the case of a
metal that occupies the half-space z < 0, the asymptotic form
of the potential experienced by an electron in the half-space
z > 0 is the classical image-potential

V (z) = − 1

4z
. (21)

If one assumes (i) translational invariance in the plane of the
surface and (ii) that due to the presence of a wide band gap at
z < 0 the solid surface is infinitely repulsive, i.e. V (z) → ∞
at z < 0,5 then one easily finds that the solutions of the
corresponding one-particle Schrödinger equation represent a
Rydberg-like series of image-potential induced bound states
(see figure 2) of the form:

ψk,n(r) = 1√
A
φn(z) eik·r‖ , (22)

with energies
Ek,n = εn + k2/2, (23)

where

φn(z) ∼ z φhydrogen
n (z/4), n = 1, 2, . . . (24)

5 This should be a reasonable approximation for the (100) surfaces of the
noble metals, in which case the vacuum level is located near the center of
the band gap.
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Figure 2. Probability amplitudes φn(z) and energies εn of image-potential-induced bound states (n = 1, 2) outside an infinitely repulsive solid
surface occupying the z < 0 space (shaded area). The thick solid line represents the classical image-potential of equation (21).
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Figure 3. Probability amplitudes φn(z) of (a) Shockley (n = 0) and (b) image (n = 1) states on Cu(111). The dotted lines represent the
results one obtains by matching at z = 0 the wavefunction of equations (26) and (27) to a mere exponential (for the Shockley state) or to
the hydrogenic form of equation (24) with n = 1 (for the n = 1 image state). The solid lines represent the results one obtains by solving a
1D Schrödinger equation with the model potential of Chulkov et al [48].

and

εn = − 1

32n2
, n = 1, 2, . . . (25)

φ
hydrogen
n (z) representing the well-known wavefunctions of all

possible s-like (l = 0) bound states of the hydrogen atom.
Here, r‖ and k represent the position and the wavevector in
the xy surface plane.

Inside the solid. In the interior of the solid (z < 0), both
image and Shockley surface states can be described within
a two-band approximation to the nearly-free-electron (NFE)
band structure of the solid [45]. Assuming translational
invariance in the plane of the surface and for a gap that
is opened by potential Fourier components corresponding
to reciprocal-lattice vectors that are normal to the surface,
surface-state wavefunctions within the crystal band gap take
the form

φ(z < 0) ≈ e� cos(Gz + δ). (26)

Here, G represents the limit of the Brillouin zone in the
direction normal to the surface, and

� = 1

G

√
1

4
V 2

g − ε̄2, (27)

where Vg and ε̄ denote the energy gap and the surface-
state energy with respect to the mid gap, respectively, and δ
represents a phase shift which in the presence of a Shockley-
inverted band gap [46] varies from −π/2 for a surface-state
energy ε at the bottom of the gap to 0 for a surface-state energy
at the top of the gap. Matching at z = 0 to a wavefunction
of the hydrogenic-like form of equation (24) (in the case of
image states) or to a mere exponential (in the case of Shockley
states) [47], one finds the wavefunctions φn(z) plotted by
dotted lines in figure 3 for Cu(111).

3.3.2. One-dimensional model potentials. Still assuming
translational invariance in two directions, i.e. assuming that
the charge density and one-electron potential are constant
in the plane of the surface, Chulkov et al [48] devised a

5
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simplified model that allows for realistic calculations while
retaining at the same time the essential physics of electron
and hole dynamics at solid surfaces. In the bulk region,
this one-dimensional (1D) model potential is described by a
cosine function which opens the energy gap on the surface
of interest, the position and amplitude of this function being
chosen to reproduce the energy gap observed experimentally
and/or obtained from first-principles calculations at the �̄-
point. At the solid–vacuum interface, it is represented by a
smooth cosine-like function that reproduces the experimental
energy of the Shockley surface state. Finally, in the vacuum
region this 1D potential merges into a long-range classical
image-potential of the form of equation (21) in such a way
that the experimental binding energy of the first image state
is reproduced. This model potential has been constructed for
several metal surfaces [49], and has been used widely for the
investigation of electron and hole dynamics in a variety of
situations.

The n = 0 and 1 eigenfunctions of a single-particle 1D
Hamiltonian that includes the model potential of Chulkov et al
for Cu(111) are plotted in figure 3 by solid lines, together with
the NFE Shockley (n = 0) and first image-state (n = 1)
wavefunctions described in the preceding section. In the bulk
region, these wavefunctions coincide with the approximate
NFE wavefunctions (represented in figure 3 by dotted lines);
however, in the vacuum region the n = 1 hydrogenic-
like wavefunction of equation (24) appears to be too little
localized near the surface. The n = 1 eigenfunction of
Chulkov’s 1D Hamiltonian for Cu(100) [50] was found to
reproduce accurately the average probability density derived
for that image state by Hulbert et al [51] from a first-principles
calculation.

The assumption that the charge density and one-electron
potential are constant in the plane of the surface is valid for
the description of image states, since their wavefunctions lie
mainly at the vacuum side of the surface and the electrons
move, therefore, in a region with little potential variation
parallel to the surface. Shockley and bulk states, however,
do suffer a significant potential variation in the plane of the
surface. In order to account approximately for this variation,
the original 1D model potential of Chulkov et al [48], which
had been introduced to describe the projected band structure
at the �̄-point, was modified along with the introduction in
equation (23) of a realistic effective mass for the dispersion
curve of both bulk and surface states [47]. Within this model,
however, all Shockley states have the same effective mass,
so the projected band structure is still inaccurate, especially
at energies above the Fermi level, as shown in figure 4 for
Cu(111).

As an alternative to the 1D model potential of Chulkov
et al [48], Vergniory et al [52] introduced a k-dependent 1D
potential that is constructed to reproduce the actual bulk energy
bands and surface-state energy dispersion obtained from 3D
first-principles calculations, thereby allowing for a realistic
description of the electronic orbitals beyond the �̄-point:

Vk(z) =
{

Uk + 2Vk cos(2πz/as), z < zk

� z > zk .
(28)

k (a.u.)
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Figure 4. Dispersion of the Cu(111) Shockley surface state (thick
solid line), as obtained from 3D ab initio calculations [52]. Shaded
areas represent areas outside the band gap, where bulk states exist.
The thin solid and dotted lines represent approximate energy
dispersions of the Shockley surface state and the bottom of the
projected band gap, respectively, as obtained from an equation of the
form of equation (23) with the Cu(111) �̄-point Shockley-state
energy (with respect to the Fermi level) ε = −0.44 eV and the
effective mass m = 0.42 (thin solid line), and with the Cu(111)
�̄-point bottom-of-the-gap energy (with respect to the Fermi level)
ε = −1.09 eV and the effective mass m = 0.22 (thin dotted line).

Here, Uk and Vk are fitted to the bulk energy bands, as

represents the interlayer spacing, � is the experimentally
determined work function, and the matching plane zk is chosen
to give the correct surface-state dispersion.

The abrupt 1D step model potential of equation (28),
which does not account for the image tail outside the surface,
could not possibly be used to describe image states. However,
it has proved to be accurate for the description of Shockley
surface states, which are known to be rather insensitive to the
actual shape of the potential far outside the surface; indeed, the
model potential of equation (28) is found to yield a surface-
state probability density |φ(z)|2 at the band edge (�̄-point,
i.e. k = 0) of the Shockley surface-state band of Cu(111),
which is in reasonably good agreement with the more realistic
surface-state probability density obtained at �̄ from the 1D
model potential of Chulkov et al [48], as shown in figure 5.
Both probability densities coincide within the bulk, although
the probability density obtained from the step model potential
of equation (28) appears to be slightly more localized near
the surface, as expected. For the overlap integral one finds
〈φ1|φ2〉 = 0.99, φ1 and φ2 being the Shockley probability
amplitudes leading to the probability densities represented in
figure 5 by solid and dashed lines, respectively.

3.4. Screened interaction

The retarded counterpart of the density-response function
entering equation (10), which in the framework of TDDFT can
be obtained rigorously by solving the integral equation (11),
yields, within linear-response theory, the electron density
δn(r, ω) induced in a many-electron system by a frequency-
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Figure 5. Probability density |φ(z)|2 of the Shockley surface state at
the center of the surface Brillouin zone (�̄-point) of Cu(111), as
obtained with the use of two different 1D model potentials: (i) the
model potential of Chulkov et al [48], which includes the image tail
outside the surface but fails to reproduce the actual band structure
beyond the �̄-point (solid line), and (ii) the model potential of
equation (28), which does not include the image tail outside the
surface but is constructed to reproduce the actual bulk energy bands
and surface-state energy dispersion beyond the �̄-point (dashed line).
Full circles represent the atomic positions of Cu in the (111)
direction. The geometrical (jellium) electronic edge (z = 0) has been
chosen to be located half an interlayer spacing beyond the last
atomic layer.

dependent external potential φext(r, ω):

δn(r, ω) =
∫

dr′ χ(r, r′;ω) φext(r′, ω). (29)

Hence, the retarded counterpart of the screened interaction
W (r, r′;ω) of equation (10) yields, within linear-response
theory, the total potential φ(r, ω) of a unit test charge at point r
in the presence of an external test charge of density next(r, ω):

φ(r, ω) =
∫

dr′ W (r, r′;ω) next(r′, ω), (30)

which can also be expressed as follows

φ(r, ω) =
∫

dr′ ε−1(r, r′;ω)φext(r, ω), (31)

with

ε−1(r, r′;ω) = δ(r−r′)+
∫

dr′′v(r−r′′) χ(r′′, r′;ω). (32)

This is the so-called inverse dielectric function of the many-
electron system, whose poles dictate the occurrence of
collective electronic excitations.

3.4.1. Classical model. In a classical model consisting
of a semi-infinite solid at z < 0 characterized by a local
(frequency-dependent) dielectric function ε(ω) separated by a
planar surface from a semi-infinite vacuum at z > 0, the total
potential φ(r, ω) at each medium is a solution of Poisson’s
equation

∇2φ(r, ω) = − 4π

εi(ω)
next(r, ω), (33)

εi being ε(ω) or 1 depending on whether the point r is located
in the solid or in the vacuum, respectively. Hence, the screened
interaction W (r, r′;ω) entering equation (30) is a solution of
the following equation:

∇2W (r, r′;ω) = − 4π

εi(ω)
δ(r − r′). (34)

Imposing boundary conditions of continuity of the potential
and the normal component of the displacement vector at the
interface, one finds

W (r, r′;ω) =
∫

dq eiq·(r‖−r′‖) W (z, z′; q, ω), (35)

where

W (z, z′; q, ω)

= 2π

q

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[e−q|z−z′ | + g(ω) e−q(|z|+z′|)]/ε(ω),
z < 0, z′ < 0,

2 g(ω) e−qz−z′ |/[ε(ω)− 1],
z< < 0, z> > 0,

e−q|z−z′ | − g(ω) e−q(|z|+|z′|),
z > 0, z′ > 0,

(36)

z< (z>) being the smallest (largest) of z and z ′, and g being the
classical surface-response function:

g(ω) = ε(ω)− 1

ε(ω)+ 1
. (37)

An inspection of equations (36) and (37) shows that the
screened interaction W (z, z ′; q, ω) has poles at the classical
bulk- and surface-plasmon conditions dictated by ε(ω) =
0 and by ε(ω) + 1 = 0, respectively [53]. Since e–e
inelastic linewidths of Shockley and image states are typically
dominated by the excitation of electron–hole (e–h) pairs and
not by the excitation of plasmons (whose energies are typically
too large)6, the classical screened interaction of equation (36)
(which obviously does not account for the excitation of e–h
pairs) is of no use in this context.

3.4.2. Specular-reflection model (SRM). A simple scheme
that gives account of the excitation of e–h pairs, and has the
virtue of expressing the screened interaction W (z, z ′; q, ω)
in terms of the dielectric function ε(q, ω) of a homogeneous
electron gas representing the bulk material, is the so-
called specular-reflection model, reported independently by
Wagner [55] and by Ritchie and Marusak [56]. In this model,
the semi-infinite solid is described by an electron gas in
which all electrons are considered to be specularly reflected
at the surface, thereby the electron density vanishing outside.

6 An exception is the case of Ag(100) [54]. Due to the presence of d-
electron screening, this surface supports the excitation of surface plasmons
at a reduced energy of ∼3.7 eV that is just below the n = 1 image-state energy
εn=1 − εF = 3.9 eV.
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One finds:

W (z, z′; q, ω)

= 2π

q

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εs(z − z′)+ εs(z + z ′)− 2 g(q, ω)
εs(z) εs(z ′)

1 − ε0
s

,

z < 0, z′ < 0,

2 g(q, ω)
εs(z<)

1 − ε0
s

e−qz> ,

z< < 0, z> > 0,

e−q|z−z′ | − g(q, ω) e−q(z+z′),

z > 0, z′ > 0,

(38)

where the surface-response function is now given by the
following expression:

g(q, ω) = 1 − ε0
s (q, ω)

1 + ε0
s (q, ω)

, (39)

with

εs(z; q, ω) = q

π

∫ +∞

−∞
dqz

Q2
eiqz zε−1(Q, ω), (40)

ε0
s (q, ω) = εs(z = 0; q, ω), (41)

and Q = √
q2 + q2

z . If the Q-dependence of the actual
ε(Q, ω) dielectric function of a homogeneous electron gas is
ignored, the SRM screened interaction of equation (38) reduces
to the classical screened interaction of equation (36).

The inverse dielectric function ε−1(Q, ω) entering
equation (40) represents the 3D Fourier transform of the
inverse dielectric function ε−1(r, r′, ω) of a homogeneous
electron gas. From equation (32), one finds:

ε−1(Q, ω) = 1 + vQ χ(Q, ω), (42)

where χ(Q, ω) represents the 3D Fourier transform of the
density-response function χ(r, r′;ω), and vQ is the 3D Fourier
transform of the bare Coulomb interaction v(r, r′): vQ =
4π/Q2.

In the framework of TDDFT, one uses equation (11) to
find

χ(Q, ω) = χ0(Q, ω)+ χ0(Q, ω)
{
vQ + f xc(n0; Q, ω)

}
×χ(Q, ω), (43)

with χ0(Q, ω) and f xc(n0; Q, ω) being the 3D Fourier
transforms of the noninteracting density-response function
χ0(r, r′;ω) and the xc kernel f xc[n0](r, r′;ω) of a
homogeneous electron gas of density n0. For a homogeneous
electron gas, the eigenfunctions ψi(r) entering equation (12)
are all plane waves; thus, the integrations can be carried
out analytically to yield the well-known Lindhard function
χ0(Q, ω) [57]. If one sets the xc kernel f xc(n0; Q, ω) equal to
zero, the introduction of equation (43) into equation (42) yields
the RPA dielectric function

εRPA(Q, ω) = 1 − vQ χ
0(Q, ω), (44)

which is easy to evaluate.

3.4.3. 1D self-consistent scheme. For an accurate quantal
description of the electronic excitations that occur in a semi-
infinite solid, we need to consider the true self-consistent
density-response function χ(r, r′;ω) entering equations (10)
and (20).

Assuming translational invariance in the plane of the
surface, one can still define the 2D Fourier transforms
W (z, z′; q, ω) and W̃ (z, z′; q, ω), which according to equa-
tions (10) and (20) can be obtained as follows

W (z, z′; q, ω) = v(z, z′; q)+
∫

dz1

∫
dz2 v(z, z1; q)

×χ(z1, z2; q, ω) v(z2, z′; q), (45)

and

W̃ (z, z′; q, ω) = v(z, z′; q)+
∫

dz1

∫
dz2

{
v(z, z1; q)

+ f xc[n0](z, z1; q, ω)
}
χ(z1, z2; q, ω) v(z2, z′, q), (46)

where v(z, z ′; q) is the 2D Fourier transform of the bare
Coulomb interaction v(r, r′):

v(z, z′; q) = 2π

q
e−q|z−z′ |, (47)

f xc[n](z, z′; q, ω) is the 2D Fourier transform of the xc
kernel f xc[n](r, r′;ω), and χ(z, z ′; q, ω) denotes the 2D
Fourier transform of the interacting density-response function
χ(r, r′;ω). In the framework of TDDFT, one uses
equation (11) to find:

χ(z, z′; q, ω)

= χ0(z, z′; q, ω)+
∫

dz1

∫
dz2 χ

0(z, z1; q, ω)

× {
v(z1, z2; q)+ f xc[n0](z1, z2; q, ω)

}
χ(z2, z′; q, ω),

(48)

where χ0(z, z′; q, ω) denotes the 2D Fourier transform of the
noninteracting density-response function χ0(r, r′;ω). Using
equation (12), and noting that the single-particle orbitals ψi(r)
now take the form

ψk,i (r) = φi(z) eik·r‖ , (49)

one finds:

χ0(z, z′; q, ω) = 2

A

∑
i, j

φi(z)φ
∗
j (z)φ j(z

′)φ∗
i (z

′)

×
∑

k

fk,i − fk+q, j

Ek,i − Ek+q, j + ω + iη
, (50)

where fk,i are Fermi–Dirac occupation factors (which at zero
temperature take the form fk,i = (εF − Ek,i )), and

Ek,i = εi + k2

2
, (51)

the single-particle orbitals φi(z) and energies εi now being
the eigenfunctions and eigenenergies of a 1D Kohn–Sham
Hamiltonian. In order to account for the actual band structure
of sp electrons near the surface of simple and noble metals,
φi(z) and εi have been successfully taken to be the solutions of
the 1D single-particle Schrödinger equation of Chulkov et al
[48] described in the previous section.
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3.4.4. Asymptotics. For z and z ′ coordinates that are far
from the surface into the vacuum, where the electron density
vanishes, equation (45) takes the form7

W (z, z′; q, ω) = v(z, z′; q)− 2π

q
e−q(z+z′) g(q, ω), (52)

with the surface-response function g(q, ω) now being given by
the general expression [58]:

g(q, ω) = −2π

q

∫
dz1

∫
dz2 eq(z1+z2) χ(z1, z2; q, ω). (53)

Persson and Anderson [59] and Persson and Zaremba [60]
investigated the structure of the so-called surface loss function
Im g(q, ω) for small q and ω. Persson and Zaremba found the
following approximate result [60]:

Im g = (Im g)surf + (Im g)bulk + (Im g)int, (54)

where (Im g)surf and (Im g)bulk represent contributions from
surface and bulk excitation of e–h pairs, and (Im g)int

represents the contribution to the surface loss function coming
from the interference between the bulk and surface excitations:

(Im g)surf = 2ξ
q

kF

ω

ωp
, (55)

(Im g)bulk = 1

2
m2

opt

(
ω

ωp

)2

η3G(η), (56)

and

(Im g)int = − 8

π2

mopt

kF

(
ω

ωp

)2

η
h

1 + η2
, (57)

with η = ω/(qkF) and

G(η) = 8

{
1, for η < 1,

1 − (1 + 1
2η

−2)(1 − η−2)1/2, for η > 1.
(58)

Here, kF and ωp represent the Fermi momentum and the
plasmon frequency, respectively: k3

F = 3π2n̄0 and ω2
p = 4π n̄0,

n̄0 being the mean electron density. The values of ξ , mopt, and
h are given in [60]. The surface contribution of equation (55)
has already been reported in [59], the bulk contribution of
equation (56) differs from that used in [59] by the factor of
the optical mass and a factor of 1

2 which had been missed
previously, and the contribution (Im g)int had been neglected
in [59].

3.4.5. The xc kernel f xc[n](z, z′; q, ω). Several approx-
imations can be used to evaluate the unknown xc kernel
f xc[n0](z, z′; q, ω) entering equations (46) and (48).

Random-phase approximation (RPA). Nowadays one usually
refers to the RPA as the result of simply setting the xc kernel
f xc[n](z, z′; q, ω) equal to zero: f xc[n](z, z′; q, ω) = 0, but
still using in equations (49) and (51) single-particle Kohn–
Sham states and energies φi(z) and εi that go beyond the
Hartree approximation.

7 Within both a classical model and the SRM, equation (52) holds for all
z, z ′ > 0.

Adiabatic local-density approximation (ALDA). If one
assumes that dynamic electron-density fluctuations are slowly
varying in all directions, the xc kernel f xc[n](z, z′; q, ω) is
easily found to be given by the following expression [58]:

f xc[n](z, z′; q, ω) = f̄ xc(n = n(z); Q = 0, ω = 0) δ(z − z′).
(59)

Here, f̄ xc(n = n(z); Q, ω) is the 3D Fourier transform of the
xc kernel of a homogeneous electron gas of density n equal
to the local density n(z), which in the limit as Q → 0 and
ω → 0 is known to be the second derivative of the xc energy
per particle εxc(n). One typically uses parametrizations [61]
of the diffusion Monte Carlo (DMC) xc energy εxc reported by
Ceperley and Alder [62].

Adiabatic nonlocal approximation (ANLDA). The investiga-
tion of short-range xc effects in solids has focused to a great
extent on the homogeneous electron gas [63]. Hence, assuming
that the unperturbed density variation [n(z) − n(z ′)] is small
within the short range of f xc[n](z, z′; q, ω), one can adopt the
following average adiabatic nonlocal approximation [64–66]:

f xc[n](z, z′; q, ω) = f̄ xc
([

n(z)+ n(z ′)
]
/2; z, z′; q, ω = 0

)
,

(60)
where f̄ xc(n; z, z′; q, ω) represents the 1D Fourier transform
of the xc kernel f̄ xc(n; Q, ω) of a homogeneous electron
gas of density n. A parametrization of the accurate DMC
calculations reported by Moroni et al [67] for the static
(ω = 0) Q-dependent nonlocal xc kernel f̄ xc(n; Q, ω =
0) that satisfies the well-known small and large-wavelength
asymptotic behavior was carried out by Corradini et al
(CDOP) [68]. An explicit expression for the 2D Fourier
transform of the CDOP parametrization of f̄ xc(n; Q, ω = 0)
was reported in [66]:

f̄ xc(n; z, z′; k) = −4πe2C

k2
F

δ(z̃)− 2πe2 B√
gk2

F + k2

× e−
√

gk2
F+k2 |z̃| − 2α

√
π/βe2

k3
F

[
2β − k2

Fz̃2

4β2
k2

F + k2

]

× e−β[k2
F z̃2/4β2+k2/k2

F], (61)

where C , B , g, α, and β are dimensionless functions of the
electron density (see [68]), kF = (3π2n)1/3, and z̃ = z − z ′.

Calculations of the frequency dependence of the xc kernel
of a homogeneous electron gas have been carried out mainly in
the limit of long wavelengths [69–74], but work has also been
done for finite wavevectors [75–78]. Approximate expressions
for the frequency-dependent xc kernel of inhomogeneous
systems have been reported in [79–82].

3.4.6. d-electron screening. The 1D self-consistent scheme
described above has proved to be appropriate for the
description of the screened interaction of sp electrons in simple
and noble metals. It has been argued, however, in the past
that a realistic first-principles description of the electronic band
structure is of key importance in the determination of the
inelastic lifetime of bulk electronic states in the noble metals,
due to the participation of d electrons in the screening of e–e
interactions [83].
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Following the scheme originally developed by Liebsch
to describe the anomalous dispersion of surface plasmons in
Ag [84], Garcı́a–Lekue et al [54] accounted for the presence
of occupied d-bands in the noble metals by assuming that sp
valence electrons are embedded in a polarizable background
at z � z0 characterized by a local dielectric function
εd(ω). Within this model, the bare Coulomb interaction
v(z, z′; q) entering equation (48) is replaced by a modified
(d-screened) Coulomb interaction v′(z, z′; q, ω) whose 2D
Fourier transform yields [85]

v′(z, z′; q, ω) = 2π

q εd(z ′, ω)
[e−q |z−z′ | + sgn(zd − z′)

× σd(ω) e−q|z−zd|e−q|zd−z′ |], (62)

where

εd(z, ω) =
{
εd(ω), z � zd

1, z > zd
(63)

and

σd = εd(ω)− 1

εd(ω)+ 1
. (64)

The first term in equation (62) is simply the 2D Fourier
transform of the bare Coulomb interaction (see equation (47)),
but now screened by the polarization charges induced within
the polarizable background. The second term stems from
polarization charges at the boundary of the medium.

3.4.7. Periodic surface. For a real periodic surface, one
may introduce the following Fourier expansion of the screened
interaction:

W (r, r′;ω) = 1

A

SBZ∑
q

∑
g,g′

ei(q+g)·r‖ e−i(q+g′)·r′
‖

× Wg,g′(z, z′; q, ω), (65)

where q is a 2D wavevector in the surface Brillouin zone
(SBZ), and g and g′ denote 2D reciprocal-lattice vectors.
According to equation (10), the 2D Fourier coefficients
Wg,g′(z, z′; q, ω) are given by the following expression:

Wg,g′(z, z′; q, ω) = vg(z, z′; q) δg,g′ +
∫

dz1

∫
dz2

× vg(z, z1; q) χg,g′(z1, z2; q, ω) vg′(z2, z′; q), (66)

where vg(z, z′; q) denote the 2D Fourier coefficients of the bare
Coulomb interaction v(r, r′):

vg(z, z′; q) = 2π

|q + g| e−|q+g| |z−z′ |, (67)

and χg,g′(z, z′; q, ω) are the Fourier coefficients of the
interacting density-response function χ(r, r′;ω). In the
framework of TDDFT, one uses equation (11) to find:

χg,g′(z, z′; q, ω) = χ0
g,g′(z, z′; q, ω)+

∫
dz1

∫
dz2

× χ0
g,g′(z, z1; q, ω) × [

vg1(z1, z2; q) δg1,g2

+ f xc
g1,g2

[n0](z1, z2; q, ω)
]
χg2,g′(z2, z′; q, ω), (68)

where χ0
g,g′(z, z′; q, ω) and f xc

g,g′ [n0](z, z′; q, ω) denote the
Fourier coefficients of the noninteracting density-response

function χ0(r, r′;ω) and the xc kernel f xc[n0](r, r′;ω),
respectively. Using equation (12), one finds:

χ0
g,g′(z, z′; q, ω) = 2

A

SBZ∑
k

∑
n,n′

fk,n − fk+q,n′

εk,n − εk+q,n′ + ω + iη

× 〈
φk,n(z)|e−i(q+g)·r‖ |φk+q,n′(z ′)

〉
× 〈
φk+q,n′(z ′)|ei(q+g′)·r‖ |φk,n(z)

〉
, (69)

the single-particle orbitals φk,n(r) and energies εk,n being
the eigenfunctions and eigenvalues of a 3D Kohn–Sham
Hamiltonian with an effective potential that is periodic in the
plane of the surface.

4. Results and discussion

4.1. Image states

The first quantitative evaluation of image-state lifetimes was
reported in [86]. This calculation was carried out from
equations (4) and (8), with (i) the hydrogenic-like image-
state wavefunction φi(z) of equation (24) with n = 1 and no
penetration into the solid, (ii) the bulk final state wavefunctions
φf(z) obtained with the use of a step model potential, and (iii)
two simplified models for the screened interaction: the SRM
of equation (38) with the RPA for the bulk dielectric function,
and the surface-response function reported by Persson and
Anderson [59]. In subsequent calculations the penetration of
the image-state wavefunction into the crystal was allowed [87],
and the role that the unoccupied part of the narrow Shockley
surface state on the (111) surfaces of Cu and Ni plays in
the decay of the n = 1 image state on these surfaces
was investigated by Gao and Lundqvist [88]. In this work,
the image-state wavefunctions were also approximated by
hydrogenic-like wavefunctions of the form of equation (24)
with no penetration into the solid, a simplified parametrized
form was used for the Shockley surface-state wavefunction,
and screening effects were neglected altogether. A G0W 0

calculation of the imaginary part of the electron self-energy
near a jellium surface was also reported [89], showing the
key role that a full evaluation of this quantity may play in the
description of surface-state lifetimes.

The first self-consistent many-body calculations of image-
state lifetimes on noble and simple metals were reported
by Chulkov et al [50, 90], and good agreement with the
experimentally determined decay times [91–93] was found.
In these calculations, all wavefunctions and energies were
obtained by solving a single-particle Schrödinger equation
with the physically motivated 1D model potential of [48],
and the electron self-energy was evaluated in the G0W 0

approximation. The potential variation in the plane of the
surface was considered later through the introduction of an
effective mass [47], and self-consistent calculations of the key
role that the partially occupied Shockley surface state plays in
the decay of image states on Cu(111) were carried out [47].
The inclusion of xc effects was investigated in the framework
of the GW� approximation, first with an adiabatic local-
density description [94] and more recently with an adiabatic
nonlocal description of the xc kernel [95].
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Figure 6. Imaginary part of the screened interaction W (z, z′; q, ω) and the effective screened interaction W̃ (z, z′; q, ω), as a function of
z = z′ for a fixed value of k (q = 0.5 Å

−1
) and various values of ω (ω = 1, 2, 3, 4 eV), in the vicinity of the (100) and (111) surfaces of Cu

and Au. ANLDA calculations of Im[W̃ (z, z′; q, ω)] are represented by thick solid lines. RPA and ANLDA calculations of Im[W (z, z ′; q, ω)]
are represented by thin solid and dotted lines, respectively. The RPA Im[W (z, z ′; q, ω)] and the ANLDA Im[W (z, z′; q, ω)] are nearly
indistinguishable, as a result of a cancellation between the xc effects due to the presence of (i) an xc hole associated with all electrons in the
Fermi sea and (ii) an xc hole associated with the excited electron or hole.

The impact of xc effects on the imaginary part of the
effective screened interaction of equation (46) in the vicinity
of the (100) and (111) surfaces of Cu and Au is illustrated
in figure 6, where ANLDA calculations of Im[W̃ (z, z′; q, ω)]
(with full inclusion of xc effects) are compared to calculations
of Im[W (z, z′; k, ω)] with (ANLDA) and without (RPA)
xc effects. Exchange–correlation effects included in the
effective screened interaction have two sources. First, there
is the reduction of the screening due to the presence of
an xc hole associated with all electrons in the Fermi sea
(see equation (48)), which is included in the calculations
represented in figure 6 by thick solid lines and also in the
calculations represented by dotted lines. Secondly, there
is the reduction of the effective screened interaction itself
due to the xc hole associated with the excited electron or
hole (see equation (46)), which is only included in the
calculations represented in figure 6 by thick solid lines.
These contributions have opposite signs, thereby bringing the
ANLDA Im[W̃ (z, z′; k, ω)] (thick solid lines) back to the RPA
Im[W (z, z′; k, ω)] (thin solid lines).

Figure 7 exhibits G0W 0, G0W , and GW� calculations of
the imaginary part of the k-resolved n = 1 image-state self-
energy 	(z, z ′; k = 0, εk), versus z, in the vicinity of the
(100) surfaces of Cu and Au, with use (in the case of the G0W
and GW� approximations) of the adiabatic nonlocal xc kernel
(ANLDA) described in section 3.4.5. This figure shows that,

as occurs in the case of the screened interaction, xc effects
partially compensate each other, leading to an overall effect
of no more than 5%. We note that, as anticipated in [95] for
the case of Cu(111), although the ALDA leads to spurious
results for the screened interaction our more realistic ANLDA
kernel yields self-energies that essentially coincide with those
obtained in the ALDA.

Tables 2 and 3 exhibit the linewidth of the n = 1 image
state (at �̄, i.e. k = 0) on the (100) and (111) surfaces of
Cu, as obtained from equation (4) with (i) the image-state
wavefunction of Chulkov et al [48] described in section 3.3.2
and (ii) various approximations for the self-energy: S RM , P Z ,
G0W 0, G0W , and GW�. Contributions to the linewidth are
separated as follows

�ee = �bulk + �vac + �mix, (70)

where �bulk, �vac, and �mix represent bulk, vacuum, and
mixed contributions, respectively, as obtained by confining the
integrals in equations (4) to either bulk (z < 0, z ′ < 0),
vacuum (z > 0, z ′ > 0), or mixed (z � 0, z ′ � 0 or
z � 0, z′ � 0) coordinates.

First of all, we set all effective masses equal to the
free-electron mass, and focus on the role that an accurate
description of the screened interaction plays in the coupling
of image states with the solid, by comparing the results
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Figure 7. G0W 0 (G0W -RPA), G0W , and GW� calculations of the imaginary part of the n = 1 image-state self-energy	(z, z ′; k = 0, εk),
versus z, in the vicinity of the (100) surfaces of Cu and Au. The solid circle represents the value of z ′ in each case. GW� calculations (as
obtained with the use of our ANLDA xc kernel) are represented by thick solid lines. G0W (also using our ANLDA xc kernel) and G0W 0

calculations are represented by dotted and thin solid lines, respectively. ALDA calculations, not plotted in this figure, are found to nearly
coincide with ANLDA calculations.

Table 2. Reciprocal lifetimes, in linewidth units (meV), of the n = 1
image state (at �̄, i.e. k = 0) on Cu(100), together with the most
recent measurement reported in [97]. All the single-particle
wavefunctions and energies entering equations (4), (8), (16), and (18)
have been chosen to be the eigenfunctions and eigenvalues of the 1D
Hamiltonian of Chulkov et al [48]. Effective masses for all the
single-particle energies entering equations (8), (16), and (18) have
been set equal to either the free-electron mass (mf = 1) or to realistic
values (mf �= 1). Various models have been considered for the
description of the electron self-energy, as obtained from (i)
equation (8) with the screened interaction of equation (38) (SRM), of
equations (52)–(58) (PZ), and of equations (45) and (48) with
f xc[n0](z, z′; q, ω) set equal to zero (G0W 0), (ii) equation (16) with
the screened interaction of equations (45) and (48) and the ANLDA
xc kernel f xc[n0](z, z′; q, ω) (G0W ), and (iii) equation (18) with the
effective screened interaction of equations (46) and (48) and the
ANLDA xc kernel f xc[n0](z, z′; q, ω) (GW�).

mf Self-energy Bulk Vacuum Mix Total Exp.

=1 SRM 18 3 −4 17
=1 PZ 55 55
=1 G0W 0 24 14 −16 22
�=1 G0W 0 7 11.5 −1 17.5
�=1 G0W 24.5
�=1 GW� 6.5 11.5 −1 17

16

obtained (within the G0W 0 approximation) with the use of
the SRM screened interaction and (for the vacuum linewidth)
the screened interaction of Persson and Zaremba (PZ). We
note that simplified jellium models for the evaluation of the
screened interaction yield unrealistic results for the image-state
lifetime. Bulk contributions to the linewidth are approximately
well described within the SRM; small differences resulting
from an approximate description, within this model, of the

Table 3. As in table 2, but for Cu(111) and together with the
reciprocal lifetime experimentally determined for this surface at
low temperature, T = 25 K [92].

mf Self-energy Bulk Vacuum Mix Total Exp.

=1 SRM 46 12 −22 36
=1 PZ 57 57
=1 G0W 0 44 47 −54 37
�=1 G0W 0 32 34 −37 29
�=1 G0W 43
�=1 GW� 30 35 −38 28

30

so-called begrenzung or boundary-effect were first described
by Ritchie [96]. However, as quantum-mechanical details of
the surface are ignored within this model, it fails to describe
both vacuum and mixed contributions to the decay rate. These
quantum-mechanical details of the surface are approximately
taken into account within the PZ approach, but the PZ model
cannot account for the coupling of the image state with the
crystal that occurs through the penetration of the image-state
wavefunction into the solid. Discrepancies between vacuum
contributions obtained in this model and in the more realistic
full G0W 0 approach appear as a result of the PZ model being
accurate only for small q wavevectors and ω frequencies.

Now we account for the variation of the potential in the
plane of the surface through the introduction of a realistic
effective mass for all surface and bulk states. The effective
masses of the n = 1 image state on Cu(100) and Cu(111)
are close to the free-electron mass (m i = 1). Nevertheless,
the effective mass of the n = 0 Shockley surface state
of Cu(111) and the unoccupied bulk states in Cu(111) and
Cu(100), which all contribute to the decay of the n = 1
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Table 4. G0W 0, G0W , and GW� reciprocal lifetimes, in linewidth
units (meV), of the n = 1 image state (at �̄, i.e. k = 0) on Au(100).
In the case of the G0W and GW� reciprocal lifetimes, both ALDA
and ANLDA xc kernels have been considered.

xc kernel G0W 0 G0W GW�

30
ALDA 42.5 31
ANLDA 43 31

image state, considerably deviate from the free-electron mass;
tables 2 and 3 show that the impact of this deviation on the
n = 1 image-state lifetime is not negligible.

As for the impact of short-range xc effects, which are fully
incorporated in the framework of the GW� approximation,
tables 2 and 3 show that the overall impact of these effects is
small and GW� reciprocal lifetimes are close to their G0W 0

counterparts.

ALDA and ANLDA GW� calculations of the reciprocal
lifetimes of the n = 1 image state on Au(100), never reported
before, are exhibited in table 4. For comparison, this table also
shows G0W 0 and G0W calculations, which in the case of the
G0W have been obtained by considering (as within the GW�

approximation) both local (ALDA) and nonlocal (ANLDA) xc
kernels. As occurs in the case of Cu [95], the results shown in
table 4 indicate that (i) a realistic adiabatic nonlocal description
of xc effects yields reciprocal lifetimes of image states that
essentially coincide with those obtained in the ALDA, and (ii)
the overall effect of short-range exchange and correlation is
small, thereby GW� reciprocal lifetimes being close to their
G0W 0 counterparts.

In table 5, we compare self-consistent G0W 0 and GW�

(as obtained with the ANLDA xc kernel) calculations (with
full inclusion of realistic values of the effective mass of all
bulk and surface states) with the existing TR-2PPE data for
the n = 1 image state at the �̄-point (k = 0) on various
simple, noble, and transition single-crystal surfaces. This
table shows that G0W 0 and GW� calculations are both in
good agreement with TR-2PPE measurements except in the
case of the (111) surfaces of the noble metal Ag and the
transition metal Ni. The largest disagreement occurs in the
case of Ni(111), where the G0W 0 linewidth is smaller than the
measured linewidth by approximately a factor of 2. This can be
attributed to the necessity of a full ab initio description of the
dynamical response of both sp and d electrons along the lines
of section 3.4.7.

The role that occupied d-bands play in the dynamics
of image states on silver surfaces was investigated in [54]
along the lines described in section 3.4.6. It was concluded
that d electrons do play an important role as a consequence
of the reduction (in the presence of d electrons) of the
surface-plasmon energy that allows the opening of a new
decay channel. No surface-plasmon decay channel is opened,
however, in the case of the other noble-metal surfaces (Cu and
Au), since in the presence of d electrons the Cu and Au surface-
plasmon energy is still too large.

Table 5. Linewidth (inverse lifetime) of image states, in meV.
The lifetime in fs (1 fs = 10−15 s) is obtained by noting that
h̄ = 658 meV fs. The numbers in brackets represent the
corresponding references. Electron–phonon linewidths are not
included since in the case of image states they are all expected to be
below 1 meV [35].

G0W 0 GW� Exp.

Li(110) 37 [94]
Cu(100) 17.5 [94] 17 [95] 16.5 ± 2.5 [91, 93]

16 [97]
Cu(111) 29 [94] 28 [95] 30 [92]a

29 ± 6 [98]b

Ag(100) 12 [54] 12 ± 1 [93]
Ag(111) 36 [54] 21 ± 9/5 [99]
Au(100) 30 [100] 31c

Pd(111) 30 [101] 26 ± 5/3 [101]
Pt(111) 23 [102] 25 ± 10/5 [102]
Ni(100) 33 [100] 41 ± 19/10 [103]
Ni(111) 44 [100] 94 ± 71/28 [104]
Ru(1000) 47 [105] 59 [106]

a At T = 25 K.
b At T = 100 K.
c This work.

4.2. Shockley states

G0W 0 calculations of the e–e inelastic lifetimes of excited
holes at the surface-state band edge of the (111) surfaces of
the noble metals Cu, Ag, and Au were first reported in [29]
and [105] within the 1D scheme of Chulkov et al [48] (see
section 3.3.2), accounting for the potential variation in the
plane of the surface through the introduction of a realistic
effective mass for the dispersion curve of both bulk and
surface states. Within this model, however, all Shockley
states have the same effective mass and the projected band
structure is still inaccurate, especially at energies above the
Fermi level, as shown in figure 4 for Cu(111). As an
alternative to the 1D model potential of Chulkov et al [48],
Vergniory et al [52] introduced the k-dependent 1D potential of
equation (28) that is constructed to reproduce the bulk energy
bands and surface-state energy dispersion obtained from 3D
first-principles calculations.

Table 6 shows a comparison between the G0W 0

calculations reported in [29, 105] and [52] for the inelastic
lifetime of an excited hole at the band edge of the Shockley
surface-state band of Cu(111), as obtained from equations (4)
and (5) with the use of the 1D scheme of Chulkov et al [48]
and with the k-dependent 1D model potential of equation (28),
respectively. The difference between the surface-state lifetime
broadening of 25 eV reported in [29] and [105] and the more
accurate lifetime broadening of 19 eV reported in [52] is
entirely due to a more accurate description in [52] of (i) the
projected band structure and (ii) the wavevector dependence
of the surface-state wavefunctions entering the evaluation
of the self-energy. G0W and GW� calculations were
reported in [95], showing that as in the case of image states
GW� linewidths are only slightly lower than their G0W 0

counterparts.
At this point, we note that the linewidths of the Cu(111)

Shockley state at �̄ based on the use of the two 1D models of
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Table 6. G0W 0, G0W , and GW� decay rates, in linewidth units
(meV), of an excited hole at the band edge of the Shockley
surface-state band of Cu(111) (Ei = −0.44 eV and ki = 0). The
G0W 0 calculations have been performed either with the use of the
k-dependent 1D model potential of equation (28), as reported in [52],
or with the use of the 1D scheme of Chulkov et al [48], as reported
in [29] and [105]. The G0W and GW� calculations have been
performed with the use of the 1D scheme of Chulkov et al [48], as
reported in [95]. The experimental linewidth has been taken from the
STM measurements reported in [29]. The total decay rate �total

includes the e–ph decay rate of 7 meV reported in [34]. �inter and
�intra represent interband and intraband contributions to the e–e decay
rate �e−e; these contributions come from the decay of the excited
hole through the coupling with bulk states (interband contribution) or
through the coupling, within the surface-state band itself, with
surface states of different wavevector k parallel to the surface
(intraband contribution).

�inter �intra �e−e �total

G0W 0 [52] 10 9 19 26
G0W 0 [29, 105] 6 19 25 32
G0W [95] 30.5 37.5
GW� [95] 24.5 31.5
Experiment 24

Table 7. G0W 0, G0W , and GW� reciprocal lifetimes, in linewidth
units (meV), of the n = 0 Shockley state (at �̄, i.e. k = 0) on
Au(111). In the case of the G0W and GW� reciprocal lifetimes,
both ALDA and ANLDA xc kernels have been considered.

xc kernel G0W 0 G0W GW�

29
ALDA 39.5 30
ANLDA 40 30

section 3.3.2 to describe the initial surface-state wavefunction
(at �̄) agree within less than 1 meV. The linewidths also
agree within less than 1 meV when the actual surface-state
dispersion (thick solid line of figure 4) is replaced by the
parabolic surface-state dispersion of the form dictated by
the thin solid line of figure 4. However, if one replaces
in the calculation of [52] the wavevector-dependent surface-
state orbitals obtained by solving a 1D Schrödinger equation
with the potential of equation (28) by their less accurate
counterparts used in [29] and [105], the lifetime broadening
is increased considerably (from 19 to 25 meV), showing the
important role that the actual coupling between initial and final
states plays in the surface-state decay mechanism.

ALDA and ANLDA GW� calculations of the reciprocal
lifetimes of the Shockley surface state on Au(111), never
reported before, are exhibited in table 7. For comparison, this
table also shows G0W 0 and G0W calculations, which in the
case of the G0W have been obtained by considering (as within
the GW� approximation) both local (ALDA) and nonlocal
(ANLDA) xc kernels. As occurs in the case of Cu [95], the
results shown in table 7 indicate that (i) a realistic adiabatic
nonlocal description of xc effects yields reciprocal lifetimes of
Shockley states that essentially coincide with those obtained in
the ALDA, and (ii) the overall effect of short-range exchange
and correlation is small, thereby GW� reciprocal lifetimes are
close to their G0W 0 counterparts.

Table 8. Linewidth (inverse lifetime) of Shockley states, in meV.
The lifetime in fs (1 fs = 10−15 s) is obtained by noting that
h̄ = 658 meV fs. The numbers in brackets represent the
corresponding references. The calculated values (�calc) are
decomposed into e–e (�e−e) and e–ph (�e−ph) contributions. Since
GW� e–e linewidths are found to be very close to their G0W 0

counterparts, only G0W 0 calculations of the e–e linewidth are
included here. In the case of Be(0001), calculations have been
performed either with the use of the 1D scheme of Chulkov et al
[48], as reported in [107], or via a fully ab initio scheme along the
lines of section 3.4.7, as reported in [109]. In the case of Cu(111),
calculations have been performed either with the use of the
k-dependent 1D model potential of equation (28), as reported in [52],
or with the use of the 1D scheme of Chulkov et al [48], as reported
in [29] and [105].

�e−e �e−ph �calc Exp.

Al(111) 336 [107] 36 [107] 372 ∼1500 [108]a

Mg(0001) 83 [107] 25 [107] 108 ∼500 [108]a

Be(0001) 280 [107] 80 [109] 360
265 [109] 80 [109] 345 350 [109]

Cu(111) 25 [29, 105] 7 [34] 32
19 [52] 7 [34] 26 24 [29]

Ag(111) 3 [29, 105] 4 [34] 7 6.5 [29]
Au(111) 29 [29, 105] 4 [34] 33 18 [29]

a At room temperature.

The calculated and experimental linewidths of Shockley
states at the �̄-point of a variety of simple and noble-metal
surfaces are collected in table 8. It had been argued in [83]
that in the case of the noble metals deviations from electron
dynamics in a free gas of sp electrons due to the participation
of d electrons in the screening of e–e interactions are of key
importance in the determination of the inelastic lifetime of
bulk electronic states. Hence, Kliewer et al [29] added this
effect to the calculated �e−e following the approach originally
suggested by Quinn [110]; they concluded that the screening
of d electrons reduces the e–e scattering considerably, thus
improving the agreement with experiment. Nevertheless, it
was shown in [54] that in the case of Shockley states, whose
decay is dominated by intraband transitions that are associated
with very small values of the momentum transfer, the screening
of d electrons is expected to reduce the lifetime broadening
only very slightly. Indeed, adding to the estimated Cu(100)
Shockley e–e linewidth at �̄ reported recently in [52] (with no
d-screening reduction) the e–ph linewidth of 7 meV reported
in [34], the calculated total linewidth is found to be �calc =
26 meV, in close agreement with the experimentally measured
linewidth of 24 meV, as shown in table 8. An extension of the
approach reported in [52] to the case of the other noble metals
Ag and Au should yield calculated linewidths that are closer to
experiment than those reported in [29] and [105].

The lifetime broadening of excited Shockley electrons
beyond the �̄-point (with k �= 0 and energies above the Fermi
level—see figure 1) was studied with an STM by Bürgi et al
[30] on Cu(111) and by Vitali et al [111] and Kliewer et al
[112] on Ag(111). The corresponding G0W 0 calculations that
follow the 1D scheme of Chulkov et al [48] were reported
in [113] and [111] for Cu(111) and Ag(111), respectively,
but now accounting for the potential variation parallel to the
surface by introducing not only a realistic effective mass
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for all bulk and surface states but also surface-state orbitals
that change with k along the surface-state dispersion curve.
More accurate calculations were later reported in the case
of Cu(111) [52] with the use of the k-dependent 1D model
potential of equation (28), showing that the inelastic lifetimes
of excited Shockley electrons happen to be very sensitive to
the actual shape of the surface-state single-particle orbitals
beyond the �̄-point. A comparison between these more refined
calculations and experiment demonstrated that there is close
agreement at the surface-state band edge, i.e. at �̄, as shown
in tables 6 and 8, and there is also reasonable agreement at
low excitation energies above the Fermi level. At energies
where the surface-state band merges into the continuum of bulk
states, however, the calculated linewidths are found to be too
low, which should signal the need for a fully 3D description of
the surface band structure.
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Silkin V M, Hüfner S and Echenique P M 2002 Phys. Rev.
Lett. 88 066805

Eiguren A, Hellsing B, Chulkov E V and Echenique P M 2003
Phys. Rev. B 67 235423

[35] Eiguren A, Hellsing B, Chulkov E V and Echenique P M 2003
J. Electron Spectrosc. 129 111

[36] Echenique P M, Pitarke J M, Chulkov E V and Rubio A 2000
Chem. Phys. 251 1

[37] Nekovee M and Pitarke J M 2001 Comput. Phys. Commun.
137 123

[38] Pitarke J M and Campillo I 2000 Nucl. Instrum. Methods B
164 147

Pitarke J M, Zhukov V P, Keyling R, Chulkov E V and
Echenique P M 2004 ChemPhysChem 5 1284

[39] Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997
[40] Gross E K U, Dobson J F and Petersilka M 1996 Density

Functional Theory II (Springer Topics in Current
Chemistry vol 181) ed R F Nalewajski (Berlin: Springer)
p 81

[41] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
Kohn W and Sham L J 1965 Phys. Rev. 140 A1133

[42] Mahan G D and Sernelius B E 1989 Phys. Rev. Lett. 62 2718
[43] Mahan G D 1990 Many Particle Physics (New York: Plenum)
[44] Del Sole R, Reining L and Godby R W 1994 Phys. Rev. B

49 8024
[45] Ashcroft N W and Mermin N D 1976 Solid State Phys.

(Philadelphia, PA: Saunders)
[46] Forstmann F 1970 Z. Phys. 235 69
[47] Osma J, Sarria I, Chulkov E V, Pitarke J M and

Echenique P M 1999 Phys. Rev. B 59 10591
[48] Chulkov E V, Silkin V M and Echenique P M 1997 Surf. Sci.

391 L1217
[49] Chulkov E V, Silkin V M and Echenique P M 1999 Surf. Sci.

437 330
[50] Chulkov E V, Sarria I, Silkin V M, Pitarke J M and

Echenique P M 1998 Phys. Rev. Lett. 80 4947
[51] Hulbert S L, Johnson P D, Weinert M and Garrett R F 1986

Phys. Rev. B 33 760
[52] Vergniory M G, Pitarke J M and Crampin S 2005 Phys. Rev. B

72 193401

15

http://dx.doi.org/10.1088/0022-3719/8/18/013
http://dx.doi.org/10.1103/PhysRevLett.45.1356
http://dx.doi.org/10.1088/0022-3719/14/9/022
http://dx.doi.org/10.1103/PhysRevB.27.2527
http://dx.doi.org/10.1103/PhysRevLett.52.1919
http://dx.doi.org/10.1103/PhysRevLett.52.1922
http://dx.doi.org/10.1103/PhysRevB.30.503
http://dx.doi.org/10.1103/PhysRevB.30.7328
http://dx.doi.org/10.1103/PhysRevB.31.4046
http://dx.doi.org/10.1103/PhysRevB.33.2256
http://dx.doi.org/10.1088/0034-4885/51/9/003
http://dx.doi.org/10.1016/0167-5729(90)90005-X
http://dx.doi.org/10.1016/0167-5729(94)90010-8
http://dx.doi.org/10.1103/PhysRevLett.55.300
http://dx.doi.org/10.1016/0167-5729(95)00002-X
http://dx.doi.org/10.1103/PhysRevLett.61.2596
http://dx.doi.org/10.1103/PhysRevB.41.5436
http://dx.doi.org/10.1103/PhysRevB.43.4688
http://dx.doi.org/10.1103/PhysRevLett.69.3583
http://dx.doi.org/10.1016/j.surfrep.2004.02.002
http://dx.doi.org/10.1016/0079-6816(89)90015-4
http://dx.doi.org/10.1016/S0368-2048(02)00150-0
http://dx.doi.org/10.1088/0034-4885/45/3/001
http://dx.doi.org/10.1103/PhysRev.56.317
http://dx.doi.org/10.1103/PhysRevLett.50.526
http://dx.doi.org/10.1103/PhysRevB.36.5809
http://dx.doi.org/10.1103/PhysRevLett.81.4464
http://dx.doi.org/10.1126/science.288.5470.1399
http://dx.doi.org/10.1103/PhysRevLett.82.4516
http://dx.doi.org/10.1103/PhysRevLett.91.106802
http://dx.doi.org/10.1088/0953-8984/14/24/306
http://dx.doi.org/10.1103/PhysRevLett.88.066805
http://dx.doi.org/10.1103/PhysRevB.67.235423
http://dx.doi.org/10.1016/S0368-2048(03)00058-6
http://dx.doi.org/10.1016/S0301-0104(99)00313-4
http://dx.doi.org/10.1016/S0010-4655(01)00175-8
http://dx.doi.org/10.1016/S0168-583X(99)01007-1
http://dx.doi.org/10.1002/cphc.200301222
http://dx.doi.org/10.1103/PhysRevLett.52.997
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRevLett.62.2718
http://dx.doi.org/10.1103/PhysRevB.49.8024
http://dx.doi.org/10.1007/BF01399758
http://dx.doi.org/10.1103/PhysRevB.59.10591
http://dx.doi.org/10.1016/S0039-6028(97)00653-5
http://dx.doi.org/10.1016/S0039-6028(99)00668-8
http://dx.doi.org/10.1103/PhysRevLett.80.4947
http://dx.doi.org/10.1103/PhysRevB.33.760
http://dx.doi.org/10.1103/PhysRevB.72.193401


J. Phys.: Condens. Matter 20 (2008) 304207 J M Pitarke and M G Vergniory

[53] Pitarke J M, Silkin V M, Chulkov E V and Echenique P M
2007 Rep. Prog. Phys. 70 1

[54] Garcia-Lekue A, Pitarke J M, Chulkov E V, Liebsch A and
Echenique P M 2002 Phys. Rev. Lett. 89 096401

Garcia-Lekue A, Pitarke J M, Chulkov E V, Liebsch A and
Echenique P M 2003 Phys. Rev. B 68 045103

[55] Wagner D 1966 Z. Naturf. A 21 634
[56] Ritchie R H and Marusak A L 1966 Surf. Sci. 4 234
[57] Lindhard J and Dan K 1954 Vidensk. Selsk. Mat.-Fys. Medd.

28 (8) 1
[58] See, e.g. Liebsch A 1997 Electronic Excitations at Metal

Surfaces (New York: Plenum)
[59] Persson B N J and Anderson S 1984 Phys. Rev. B 29 4382
[60] Persson B N J and Zaremba E 1985 Phys. Rev. B 31 1863
[61] See, e.g. Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[62] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[63] Constantin L A and Pitarke J M 2007 Phys. Rev. B

75 245127 and references therein
[64] Olevano V, Palummo M, Onida G and Del Sole R 1999

Phys. Rev. B 60 14224
[65] Lein M, Gross E K and Perdew J P 2000 Phys. Rev. B

61 13431
[66] Pitarke J M and Perdew J P 2003 Phys. Rev. B 67 045101
[67] Moroni S, Ceperley D M and Senatore G 1995 Phys. Rev. Lett.

75 689
[68] Corradini M, Del Sole R, Onida G and Palummo M 1998

Phys. Rev. B 57 14569
[69] Gross E K U and Kohn W 1985 Phys. Rev. Lett. 55 2850
[70] Iwamoto N and Gross E K U 1987 Phys. Rev. B 35 3003
[71] Vignale G and Kohn W 1996 Phys. Rev. Lett. 77 2037
[72] Vignale G, Ullrich C A and Conti S 1997 Phys. Rev. Lett.

79 4878
[73] Nifosi R, Conti S and Tosi M P 1998 Phys. Rev. B 58 12758
[74] Qian Z and Vignale G 2002 Phys. Rev. B 65 235121
[75] Brosens F, Lemmens L F and Devreese J T 1976 Phys. Status

Solidi b 74 45
[76] Devreese J T, Brosens F and Lemmens L F 1980 Phys. Rev. B

21 1349
Brosens F, Devreese J T and Lemmens L F 1980 Phys. Rev. B

21 1363
[77] Richardson C F and Ashcroft N W 1994 Phys. Rev. B 50 8170
[78] Sturm K and Gusarov A 2000 Phys. Rev. B 62 16474
[79] Petersilka M, Gossmann U J and Gross E K U 1996 Phys. Rev.

Lett. 76 1212
[80] Burke K, Petersilka M and Gross E K U 2000 A hybrid

functional for the exchange–correlation kernel in
time-dependent density functional theory Recent Advances
in Density Functional Methods vol III, ed P Fantucci and
A Bencini (Singapore: World Scientific)

[81] Del Sole R, Adragna G, Olevano V and Reining L 2003
Phys. Rev. B 67 045207

[82] Nazarov V U, Pitarke J M, Takada Y, Vignale G and
Chang Y-C 2007 Phys. Rev. B 76 205103

[83] Campillo I, Pitarke J M, Rubio A, Zarate E and
Echenique P M 1999 Phys. Rev. Lett. 83 2230

Campillo I, Pitarke J M, Rubio A and Echenique P M 2000
Phys. Rev. B 62 1500

[84] Liebsch A 1993 Phys. Rev. Lett. 71 145
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